

Application Note

Monitoring strategy – Condition monitoring of small centrifugal pumps

Application Note

Monitoring strategy – Condition monitoring of small centrifugal pumps

Scope

The machine monitoring strategy is applicable to all types of horizontal centrifugal pumps with rolling element bearings. It is a generic solution, so it can be used for machines in a wide range of industrial processes for all types of fluid applications, including cryogenic (LNG). Larger horizontal pumps with journal bearings are covered by a separate application note.

Machine Operation and Maintenance Requirements

Pumps are used in many applications, including the petrochemical and power industry. The amount and type of maintenance required for pumps is highly dependent on the type of process they are used in and their operation duty. There is consequently a wide range of different failure modes that can occur. Typical faults include unbalance, misalignment, bent shaft and damaged bearings. The wet portion of the pump can also be affected by flow disturbances and cavitation.

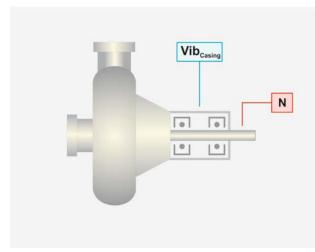
If unchecked, these potential failure modes can consequently result in in excessive loading, high axial thrust, premature bearing failure, seal leaks, component damage or even a catastrophic failure.

Monitoring Strategy

A **condition monitoring** strategy is intended to **detecThe** sensors used for protective monitoring are also used for condition monitoring. Protective monitoring is vital for many large pumps for monitoring failure modes of critical components which have little or no advance warning, such as debris in the liquid, severe rubbing or loss of lubrication.

The condition monitoring strategy can be extended with

Performance monitoring techniques for detecting a greater number of potential failure modes and for optimising the overall performance of the pump. t most developing faults at an early enough stage such that maintenance can be costeffectively planned ahead of time without stopping the machine. The sensors used for protective monitoring are also used for condition monitoring. Protective monitoring is vital for many large pumps for monitoring failure modes of critical components which have little or no advance warning, such as debris in the liquid, severe rubbing or loss of lubrication.


The condition monitoring strategy can be extended with **Performance monitoring** techniques for detecting a greater number of potential failure modes and for optimising the overall performance of the pump.

Monitoring Configuration and Techniques

Symbol	Signal	
Absolute Vibration Monitoring Sensors		
Vib _{Casing}	1x Casing radial vibration (accelerometer)	
Relative Vibration Monitoring Sensors		
Ν	Shaft speed, phase reference	

Table 1. Input signal symbols.

Figure 1. Monitoring inputs..

Sensor Location (type)	Measurements	Plots	Faults that can be detected and diagnosed
Shaft (Tacho)	o Speed, phase	o Trend vs. time	Phase and triggering used in other measurements
Casing (Absolute radial vibr.)	 Overall (ISO:1Hz/10Hz - 1kHz) CPB6% Autospectrum (FFT) Envelope (bearing) 	 Trend vs. time/speed Spectrum Waterfall 	Bearing damage, lack of lubrication, overload, wear, structural looseness, unbalance, misalignment, flow problems, cavitation, blade clearance, rubbing

Table 2. Monitoring techniques..

Brüel & Kjær Vibro GmbH Leydheckerstrasse 10 64293 Darmstadt - Germany Phone: +49 (0) 6151 428 0 Fax: +49 (0) 6151 428 1000 info@bkvibro.com **www.bkvibro.com**

BAN 0057-EN-11 Date: 08-06-2015