

Application Note

Basic Condition Monitoring of Piston Reciprocating Compressors

Application Note

Basic Condition Monitoring of Reciprocating Compressors

Scope

The machine monitoring strategy (Basic condition monitoring as well as the Advanced condition and performance monitoring) is applicable to all types of API 618 reciprocating compressors, lubricated and non-lubricated, piston ring sealing or labyrinth sealing, double acting or single acting. Hyper compressors (i.e. the secondary reciprocating compressor used in LDPE production) are covered by a separate application note.

Machine Operation and Maintenance Requirements

API 618 reciprocating compressors are used in a wide range of applications in the petrochemical industry. Regardless of the process, these machines are very maintenance intensive in relation to turbo-machinery, but are typically not monitored enough. If developing faults are unchecked, these can lead to component breakage, leaks or even complete machine failure.

This Application Note focuses on critical and non-critical machines that have only basic operation and maintenance requirements.

Monitoring Strategy

A Basic condition monitoring technique is intended to detect most developing faults at an early enough stage such that maintenance to be cost-effectively planned ahead of time without stopping the machine. The sensors used for protective monitoring are also used for condition monitoring, plus a rod drop and some extra process signals. Protective monitoring is vital for reciprocating compressors for monitoring failure modes of critical components which have little or no advance warning, such as liquid carryover, bolt/nut fracture, crosshead wrist pin seizing, loss of lubrication, etc.

The basic condition monitoring strategy can be extended with more Advanced condition and performance monitoring techniques for detecting a greater number of potential failure modes. The same faults detected by the Basic condition monitoring strategy can also be detected by the Advanced condition and performance monitoring strategy, but earlier, more reliably and with more specific information on the location of the fault. The Advanced monitoring strategy is more suitable for monitoring at different operating conditions.

Monitoring Configuration and Techniques

Figure 1. Cylinder: Monitoring inputs.

Symbol	Signal			
Absolute Vibration Monitoring Sensors				
Vib _{X-Head}	Crosshead radial vibration (accelerometer)			
Vib _{Cyl-Head}	Cylinder head radial vibration (accelerometer)			
Relative Vibration Monitoring Sensors				
Vib _{Rod Drop}	Rider ring wear (displacement sensor)			
N	Shaft speed, phase reference			
Process Values (Imported or Sensors)				
I _{Drum}	Knock-out drum fluid level			
t _{X-head}	Crosshead temperature			
\mathbf{t}_{Leak} (or \mathbf{m}_{Leak})	Packing leak gas temperature (or flow)			
Td	Discharge gas temperature			
t _{Valves}	Suction and discharge valve temperature			
Other process	Coolant and lube temp., pressure, differential pressure across filter, level, flow			

Table 1. Input signal symbols..

Monitoring Configuration and Techniques (cont.)

Figure 2. Frame: Monitoring inputs.

Symbol	Signal			
Absolute Vibration Monitoring Sensors				
Vib _{Frame}	Frame radial vibration (velocimeter or accelerometer)			
Relative Vibration Monitoring Sensors				
Vib _{Main-Brg}	X-Y radial vibration (displacement sensor)			
N	Shaft speed, phase reference			
Process Values (Imported or Sensors)				
t _{Main_Brg} , t _{Rod_Brg}	Bearing temp. of main bearing and crank rod bearings			
Other process	Coolant and lube temp., pressure, differential pressure across filter, level, flow			

Table 2. Input signal symbols.

Sensor Location (type)	Measurements	Plots	Faults that can be detected and diagnosed
Crank shaft (Relative radial vibr.)	 Overall (ISO:1Hz/10Hz - 1kHz) DC (bearing position) Autospectrum (FFT) DC vs. RPM 1x, 2x, 3x 	 Trend vs. time/speed Spectrum Waterfall Orbit Shaft position Transient (Bodé) 	Bearing damage, lack of lubrication, overload, wear
Rod drop (Relative radial vibr.)	 Cyclic DC (wear ring displ.) CPB6% 	 Trend vs. time Trend vs. crank angle 	Wear ring wear and damage, rod condition, crosshead looseness
Shaft, flywheel (Tacho)	Speed, phase	Trend vs. time	Phase and triggering used in other measurements

Table 3. Monitoring techniques.

Monitoring Configuration and Techniques (cont.)

Sensor Location (type)	Measurements	Plots	Faults that can be detected and diagnosed
Cylinder and/or crosshead (Absolute radial accel. vibr.)	 Overall (ISO:1Hz/10Hz - 1kHz) CPB6% Autospectrum (FFT) 	 Trend vs. time Trend vs. crank angle Spectrum Waterfall 	 Crosshead: Pin looseness, shoe clearance, broken rod Head: Liquid carryover, damaged rings, loose piston nut
Frame (Absolute radial velocity or accel. vibr.)	 Overall (ISO:1Hz/10Hz - 1kHz) CPB6% Autospectrum (FFT) 	Trend vs. timeSpectrumWaterfall	Damaged crank, bearing, connecting rod, defective mounting supports
Cylinder (Process)	 DC (valve temp.) DC (leak flow., temp., or pressure.) DC spread (valve temp.) DC (discharge temp.) DC (suction pressure) 	Trend vs. time	 Valves: Damage, excessive gas leak Discharge/Suction: High discharge gas temp. can damage seals. High discharge temp./pressure, or low suction pressure often due to improper process. Cylinder: High D pressure could load rod/frame
Bearings (Process)	 DC (crosshead pin, shoe temp.) DC (main bearing temp.) DC (big end bearing temp.) 	Trend vs. time	Damaged and worn bearings, lack of lubrication, overload, wear
Aux. systems (Process)	 DC (KO drum liquid level) DC (recycle gas flow) 	Trend vs. time	KO drum : Avoid liquid carryover that could damage piston, seal, rod and cylinder head.

Table 3. Monitoring techniques (cont.).

Brüel & Kjær Vibro GmbH Leydheckerstrasse 10 64293 Darmstadt - Germany Phone: +49 (0) 6151 428 0 Fax: +49 (0) 6151 428 1000 info@bkvibro.com www.bkvibro.com

BAN 0060-EN-11 Date: 04-06-2015